久久久国产精品视频_999成人精品视频线3_成人羞羞网站_欧美日韩亚洲在线

0
400-888-7501
首頁 SCI Journal Of Fixed Point Theory And Applications雜志 雜志問答

《Journal Of Fixed Point Theory And Applications》雜志是幾區?

來源:學術之家整理 2025-03-18 15:38:45

《Journal Of Fixed Point Theory And Applications》雜志在中科院分區中位于:3區。

中科院分區在SCI期刊中具有重要地位,主要體現在以下幾個方面:

投稿參考:中科院分區為科研人員選擇投稿期刊提供了重要依據。高分區期刊通常具有較高的學術聲譽和影響力,科研人員可以根據自己的研究領域和成果水平,選擇合適分區的期刊投稿,提高論文被接受和發表的機會。

學術評價:國內許多高校和科研機構在對科研人員進行績效考核、職稱評定、科研獎勵等方面,常常將中科院分區作為重要的評價指標之一。

學術影響力提升:進入中科院分區表是對期刊學術質量和影響力的一種認可,尤其是對于一些新興期刊或發展中的期刊來說,獲得較好的分區能夠吸引更多優秀的稿件和讀者,進一步提升期刊的學術影響力。

雜志簡介

《Journal Of Fixed Point Theory And Applications》是一本在數學領域具有重要影響力的學術期刊,由出版社Springer International Publishing出版,出版地區為:SWITZERLAND。

一、基本信息

創刊時間:2007年
出版周期:Quarterly
ISSN:1661-7738,E-ISSN:1661-7746

定位:

《不動點理論與應用》雜志(JFPTA)為所有學科的重要研究提供了一個出版論壇,其中不動點理論工具的使用起著至關重要的作用。研究主題包括但不限于:

(i) 不動點理論以及相關拓撲方法的新發展,

特別是:

各種類型映射的度和不動點指標,

Leray-Schauder 理論背景下的代數拓撲方法,

Lefschetz 和 Nielsen 理論,

Borsuk-Ulam 類型結果,

集值映射的 Vietoris 分數和不動點。

(ii) 對全局分析、動力系統和辛拓撲的影響,

特別是:

非線性現象研究中的度和 Conley 指標,

Lusternik-Schnirelmann 和 Morse 理論方法,

Floer同源性和漢密爾頓系統,

橢圓復形和 Atiyah-Bott 不動點定理,

辛不動點定理和與 Arnold 猜想相關的結果。

(iii) 在非線性分析、數理經濟學和計算理論中的重要應用,

特別是:

分岔理論和非線性 PDE,

凸分析和變分不等式,

KKM 映射、博弈論和經濟學,

用于計算不動點的不動點算法。

(iv) 對幾何、流體動力學和數學物理中的重要問題的貢獻,

特別是:

全局黎曼幾何,

流體中的非線性問題力學。

二、內容特色

內容特色:文章風格兼顧專業性與可讀性,適合不同背景的讀者。

三、學科領域與覆蓋范圍

主要學科:數學-數學。
覆蓋范圍:該刊發文范圍涵蓋MATHEMATICS等領域。

四、學術影響力與評價

影響因子與分區:《Journal Of Fixed Point Theory And Applications》雜志的影響因子為1.4 ,JCR分區:Q1區,中科院分區:大類學科:數學,分區:3區,小類學科:MATHEMATICS數學,分區:3區。

發文量與Gold OA占比:年發文量:85,Gold OA文章占比:23.11%。

Journal Of Fixed Point Theory And Applications中科院分區

中科院分區2023年12月升級版

大類學科 分區 小類學科 分區 Top期刊 綜述期刊
數學 3區 MATHEMATICS 數學 MATHEMATICS, APPLIED 應用數學 3區 3區

中科院分區:中科院分區是SCI期刊分區的一種,是由中國科學院國家科學圖書館制定出來的分區。主要有兩個版本,即基礎版和升級版。2019年中國科學院文獻情報中心期刊分區表推出了升級版,實現了基礎版和升級版的并存過渡;升級版是對基礎版的延續和改進,將期刊由基礎版的13個學科擴展至18個,科研評價將更加明確。

聲明:該作品系作者結合互聯網公開知識整合。如有錯漏請聯系我們,我們將及時更正。